Abstract

There is a need for large-scale remote data collection in a controlled environment, and the in-home availability of virtual reality (VR) and the commercial availability of eye tracking for VR present unique and exciting opportunities for researchers. We propose and provide a proof-of-concept assessment of a robust system for large-scale in-home testing using consumer products that combines psychophysiological measures and VR, here referred to as a Virtual Lab. For the first time, this method is validated by correlating autonomic responses, skin conductance response (SCR), and pupillary dilation, in response to a spider, a beetle, and a ball using commercially available VR. Participants demonstrated greater SCR and pupillary responses to the spider, and the effect was dependent on the proximity of the stimuli to the participant, with a stronger response when the spider was close to the virtual self. We replicated these effects across two experiments and in separate physical room contexts to mimic variability in home environment. Together, these findings demonstrate the utility of pupil dilation as a marker of autonomic arousal and the feasibility to assess this in commercially available VR hardware and support a robust Virtual Lab tool for massive remote testing.

Highlights

  • Virtual Reality (VR) is defined as “an advanced form of human–computer interface that allows the user to interact with and become immersed in a computer-generated environment in a naturalistic fashion” (Schultheis and Rizzo, 2001)

  • There was a significant main effect of Condition where mean pupil dilation significantly differed between the stimuli, with significantly greater pupil dilation to the spider than to the ball t(35) = 2.87, p = 0.007, d = 0.97

  • There was a significant interaction effect between Condition and Distance, meaning the pattern of pupil dilation in each condition differed at each distance

Read more

Summary

Introduction

Virtual Reality (VR) is defined as “an advanced form of human–computer interface that allows the user to interact with and become immersed in a computer-generated environment in a naturalistic fashion” (Schultheis and Rizzo, 2001). Video stimuli, or even augmented reality, VR is unique in that it is at the furthest end of the reality continuum (Milgram and Kishino, 1994) replacing real-world environments with virtual contexts. This allows for levels of stimulus control that surpass lab testing, absolute control of colors, textures, and luminance (Riva et al, 2016). The addition of integrated eye tracking, which is currently available to control interfaces and guide avatars in games (e.g., FOVE Eye Tracking VR Headset), opens up for measuring psychophysiological responses remotely on a large scale. The widespread use of VR by the public, in research, and in therapy is creating a need for more high-quality empirical studies examining VR and its capability for naturalistic “Big Data.”

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.