Abstract

The neuron innervating the hamster submandibular (SM) gland was identified in the superior cervical ganglion (SCG) in vitro by recording the antidromic response using the intracellular recording technique. After the cellular response was recorded, methylene blue was injected iontophoretically into the neuron from the recording electrode, and the location of the cell soma was determined. The salivatory neurons of the SM gland were in the small- to medium-sized group of the entire cell population of the SCG. The cell size was 36.3 x 24.4 microm (mean, n=45). The postganglionic fibers were entirely unmyelinated (mean: 0.34 m/sec at 28-30 degrees C, n=141). Eighty-seven percent of the cells were distributed in the central one-third of area between the external carotid nerve origin and the caudal pole in the SCG. The resting membrane potential, membrane input resistance, membrane time constant and membrane input capacitance of the salivatory neuron were as follows: -49.2+/-7.6 mV (n=102), 52.9+/-23.6 Mohms (n=71), 8.0+/-3.4 msec (n=71) and 147+/-50 pF (n=71). Fast- and slow-excitatory postsynaptic potentials (EPSPs) were evoked, but not slow-inhibitory postsynaptic potentials (IPSPs). The fast EPSP was 13.1+/-5.7 mV in amplitude and 46.2+/-17.1 msec in duration (n=35). The slow EPSP (20 Hz, 5 sec) was 6.9+/-11 .9 mV in amplitude and 101+/-43 sec in duration (n=16). The directly-evoked spike was 63.0+/-11.9 mV in amplitude and 5.9+/-1.3 msec in duration (n=54). The spike after-hyperpolarization (AHP) was 12.5+/-3.5 mV in amplitude and 353+/-161 msec in duration. Na+ and Ca+ channels were involved in the spike generation. The voltage-dependent K+ channels (delayed rectifier), A channels and rapidly Ca2+-activated K+ channels (BK channels) regulated the spike-falling phase. The delayed rectifiers, A channels, and BK and SK (slowly Ca2+-activated) channels were involved in generation of spike-AHP. Muscarine suppressed the Ca2+ component of spike via muscarinic receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.