Abstract

Primulina genus is an ideal wild ornamental flower and emerging model for studying biosynthesis, diversity, and evolution of flower pigment. However, the molecular mechanism underlying anthocyanin biosynthesis and regulation in Primulina remains unknown. Here, changes in anthocyanin content and the expression profiles of anthocyanin biosynthetic structural genes were examined in developing Primulina swinglei flowers and three other organs. Seventy-three R2R3-MYB transcription factor genes were identified from transcriptome of P. swinglei flowers, two of which, PsMYB1 and PsMYB2, are candidate regulators of anthocyanin biosynthesis according to clustering analysis. Furthermore, transient over-expression studies using tobacco leaves showed distinct pigment accumulation following co-infection with PsMYB1 and MrbHLH1 (a previously confirmed anthocyanin regulator from Morella rubra). Additionally, dual luciferase assays showed that PsMYB1 trans-activated the PsANS promoter, with the addition of MrbHLH1 resulting in a 5-fold increase in the intensity of this interaction. PsMYB1 did not, however, have any effect on the PsF3H promoter. The expression profile and dual luciferase assays showed that PsMYB2 plays no roles in anthocyanin regulation. Therefore, PsMYB1 is proposed to be the transcription factor gene regulating anthocyanin biosynthesis in P. swinglei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.