Abstract
The valence electronic states of the iodine molecule are analysed by means of a simple atoms-in-molecule model which accounts for the lowest 2P states of iodine atoms and approximates the spin-orbit interaction by its atomic part. For this model, an inverse problem is solved, i.e. non-relativistic potential energy curves and diabatic couplings are determined by a least-squares fit to known relativistic potential energy curves. The resulting adiabatic wave functions are used to calculate the electronic matrix elements responsible for natural, hyperfine and magnetic predissociation of the iodine molecule in the B0+ u: state. The results are in reasonable agreement with experimental data, being stable enough with respect to the variation of input relativistic potentials. They also indicate the importance of diabatic couplings between the non-relativistic states of the same symmetry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.