Abstract

Three high strength low alloy steels with low carbon contents and varying alloy contents were exposed to 21 MPa (3000 psi) hydrogen pressure in the temperature range 350 to 510°C. The resulting sample expansion rate was measured using a highly sensitive capacitance dilatometer. In all three HSLA steels, the early expansion rate was found to be independent of exposure time, but a function of exposure temperature and pressure. The temperature dependence of the sample expansion rate was similar for all three HSLA and the reference carbon steels, and corresponded roughly to an activation energy (Q) of 190 KJ/mole. The later accelerating expansion rate fitted aQ of 160 KJ/mole. Though the sample expansion rates exhibited the same temperature dependence, they varied by as much as two orders of magnitude among the three HSLA and the carbon steels. This marked variation in rate was proportional to the estimated carbon activity in each steel. Comparison between the Nelson curves published by the Americal Petro-leum Institute (API) for 1/2 pct Mo steel and the experimental curves constructed for HSLA steels indicated that these steels should provide comparable or better resistance to hydrogen attack than the 1/2 pct Mo steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.