Abstract
(Abridged for arXiv) The history of the mass assembly of brightest cluster galaxies may be studied by the mapping the stellar populations at large radial distances from the galaxy centre. We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster and out to three effective radii. Using seven absorption-features defined in the Lick/IDS system and single stellar populations models, we obtained luminosity-weighted ages, metallicities and alpha element abundances. The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided into two radial regimes, one within and the another beyond one effective radius, $R_e = 8.4$ kpc, similar to the distinction between inner galaxy and external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy ($R\leq R_e$) is old (age $\sim 14$ Gyr), have negative metallicity gradients and positive alpha element gradients. The external halo is also very old, but the metal and element abundances of the external halo have both a large scatter, indicating that stars from a variety of satellites with different masses have been accreted. The region in the extended halo associated with the off-centred envelope at 0$^o$ < P.A.< 90$^o$ (Arnaboldi et al. 2012) has higher metallicity with respect to the symmetric external halo. The different stellar populations in the inner galaxy and extended halo reflect the dominance of in situ stars in the former and the accreted origin for the large majority of the stars in the latter. These results provide supporting evidence to the recent theoretical models of formation of massive ellipticals as a two-phase process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.