Abstract

The development of credit scoring model has been regarded as a critical topic. This study proposed four approaches combining with the KNN (K-nearest neighbor) classifier for features selection that retains sufficient information for classification purpose. Two UCI data sets and different models combined with KNN classifier were constructed by selecting features. KNN classifier combines with conventional statistical LDA, Decision tree, Rough set and F-score approaches as features preprocessing step to optimize feature space by removing both irrelevant and redundant features. The procedure of the proposed algorithm is described first and then evaluated by their performances. The results are compared in combination with KNN classifier and nonparametric Wilcoxon signed rank test will be held to show if there has any significant difference between these approaches. Our results suggest that hybrid credit scoring models are robust and effective in finding optimal subsets and the compound procedure is a promising method to the fields of data mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.