Abstract

This chapter showcases two further lectures on the Hodge theory of maps, and they are mostly composed of exercises. The first lecture details a minimalist approach to sheaf cohomology, and then turns to the intersection cohomology complex, which is limited to the definition and calculation of the intersection complex Isubscript X of a variety of dimension d with one isolated singularity. Finally, this lecture discusses the Verdier duality. The second lecture sets out the Decomposition theorem, which is the deepest known fact concerning the homology of algebraic varieties. It then considers the relative hard Lefschetz and the hard Lefschetz for intersection cohomology groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.