Abstract

Let S be a closed Shimura variety uniformized by the complex n-ball associated with a standard unitary group. The Hodge conjecture predicts that every Hodge class in \({H^{2k} (S, \mathbb{Q})}\), \({k=0,\dots, n}\), is algebraic. We show that this holds for all degrees k away from the neighborhood \({\bigl]\tfrac13n,\tfrac23n\bigr[}\) of the middle degree. We also prove the Tate conjecture for the same degrees as the Hodge conjecture and the generalized form of the Hodge conjecture in degrees away from an interval (depending on the codimension c of the subvariety) centered at the middle dimension of S. These results are derived from a general theorem that applies to all Shimura varieties associated with standard unitary groups of any signature. The proofs make use of Arthur’s endoscopic classification of automorphic representations of classical groups. As such our results rely on the stabilization of the trace formula for the (disconnected) groups \({GL (N) \rtimes \langle \theta \rangle}\) associated with base change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.