Abstract

Heat shock response (HSR) that protects cells from proteotoxic stresses is downregulated in aging, as well as upon replicative senescence of cells in culture. Here we demonstrate that HSR is suppressed in fibroblasts from the patients with segmental progerioid Werner Syndrome, which undergo premature senescence. Similar suppression of HSR was seen in normal fibroblasts, which underwent senescence in response to DNA damaging treatments. The major DNA-damage-induced signaling (DDS) pathways p53-p21 and p38-NF-kB-SASP contributed to the HSR suppression. The HSR suppression was associated with inhibition of both activity and transcription of the heat shock transcription factor Hsf1. This inhibition in large part resulted from the downregulation of SIRT1, which in turn was because of decrease in the expression of the translation regulator HuR. Importantly, we uncovered a positive feedback regulation, where suppression of Hsf1 further activates the p38-NF-κB-SASP pathway, which in turn promotes senescence. Overexpression of Hsf1 inhibited the p38-NFκB-SASP pathway and partially relieved senescence. Therefore, downregulation of Hsf1 plays an important role in the development or in the maintenance of DNA damage signaling-induced cell senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.