Abstract

It is general knowledge that the harmonic mean $H(x,y)=\frac2{\frac1x+\frac1y}$ and that the geometric mean $G(x,y)=\sqrt{xy}\,$, where $x$ and $y$ are two positive numbers. In the paper, the authors show by several approaches that the harmonic mean $H_{x,y}(t)=H(x+t,y+t)$ and the geometric mean $G_{x,y}(t)=G(x+t,y+t)$ are all Bernstein functions of $t\in(-\min\{x,y\},\infty)$ and establish integral representations of the means $H_{x,y}(t)$ and $G_{x,y}(t)$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.