Abstract

We review the resonance gas formalism of hadron thermodynamics and recall that an exponential increase of the resonance spectrum leads to a limiting temperature of hadronic matter. We then show that the number p(n) of ordered partitions of an integer n grows exponentially with n and satisfies the integer counterpart of the statistical bootstrap equation. Considering the set of all partitions as a Gibbs ensemble provides a partition thermodynamics which is also governed by a limiting temperature, determined by the combinatorial structure of the problem. Further associating intrinsic quantum numbers to integers results in a phase diagram equivalent to that found in QCD for hadronic matter as function of temperature and baryochemical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.