Abstract

As present and future experiments, on both the energy and precision frontiers, look to identify new physics beyond the Standard Model, we require more precise determinations of fundamental quantities, like the QED and electroweak couplings at various momenta. These can be obtained either entirely from experimental measurements, or from one such measurement at a particular virtuality combined with the couplings' virtuality dependence computed within the SM. Thus, a precise, entirely theoretical determination of the running couplings is highly desirable, even more since the preliminary results of the E989 experiment in Fermilab were published. We give results for the hadronic contribution to the QED running coupling $\alpha(Q^2)$ and weak mixing angle $\sin^2\theta_W(Q^2)$ in the space-like energy region $(0, 7]~\text{GeV}^2$ with a total relative uncertainty of $2\%$ at energies $Q^2 \ll 1~\text{GeV}^2$, and $1\%$ at $Q^2 > 1~\text{GeV}^2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.