Abstract

In this study, the Generalized Uncertainty Principle (GUP) effect on the Hawking radiation formed by tunneling of a massive vector boson particle from the 2+1 dimensional new-type black hole was investigated. We used modified massive vector boson equation based on the GUP. Then, the Hamilton-Jacobi quantum tunneling approach was used to work out the tunneling probability of the massive vector boson particle and Hawking temperature of the black hole. Due to the GUP effect, the modified Hawking temperature was found to depend on the black hole properties, on the AdS3 radius, and on the energy, mass, and total angular momentum of the tunneling massive vector boson. In the light of these results, we also observed that modified Hawking temperature increases by the total angular momentum of the particle while it decreases by the energy and mass of the particle and the graviton mass. Also, in the context of the GUP, we see that the Hawking temperature due to the tunneling massive vector boson is completely different from both that of the spin-0 scalar and that of the spin-1/2 Dirac particles obtained in the previous study. We also calculate the heat capacity of the black hole using the modified Hawking temperature and then discuss influence of the GUP on the stability of the black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.