Abstract

Fluorinated organo-silica gels doped with tetra-n-propylammonium perruthenate (TPAP) are excellent catalysts for the aerobic oxidative dehydrogenation of alcohols in supercritical CO2 (scCO2). Their activity and stability are subtly dictated by structure, depending on the degree of fluorination and on the length of the fluoroalkyl chain linked to the silica network. Such dependence reflects the hydrophilic-hydrophobic balance (HHB) of the matrix, as evaluated by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The remarkable correlation between the materials' HHB and reactivity provides a finding of general validity for reaction-controlled mechanisms, which opens the route to the synthesis of second generation sol-gel entrapped catalysts for the production of fine chemicals in scCO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.