Abstract
In this paper, a direct rigorous mathematical proof of the Gregory–Laflamme instability for the five-dimensional Schwarzschild black string is presented. Under a choice of ansatz for the perturbation and a gauge choice, the linearized vacuum Einstein equation reduces to an ordinary differential equation (ODE) problem for a single function. In this work, a suitable rescaling and change of variables is applied, which casts the ODE into a Schrödinger eigenvalue equation to which an energy functional is assigned. It is then shown by direct variational methods that the lowest eigenfunction gives rise to an exponentially growing mode solution, which has admissible behavior at the future event horizon and spacelike infinity. After the addition of a pure gauge solution, this gives rise to a regular exponentially growing mode solution of the linearized vacuum Einstein equation in harmonic/transverse-traceless gauge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.