Abstract
The grand canonical Monte Carlo (GCMC) simulation is adopted to study the hydrogen adsorption in armchair single-walled carbon nanotubes (SWCNTs) with diameters 1.4 and 2.7 nm at different temperatures and pressures. The effect of hypothetical defects existing in a SWCNT is also considered. The calculated results indicate that the effect of temperature on the hydrogen storage capacity is significant. At room temperature (280 K), hydrogen storage capacity of SWCNTs with diameters 1.4 and 2.7 nm all are low (<0.3%). The effect of pressure is obvious, but the hypothetical defects are insensitive. At low temperature (77 K), the hydrogen storage capacity is relatively high, where the DOE goal for 2020 can be reached by the larger diameter. The effect of pressure is insensitive, while the hypothetical defects have distinctly effect on gravimetric capacity. Moreover, there is a way to improve the gravimetric capacity by increasing defects in SWCNTs at low temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.