Abstract

The Glueckstadt Graben is one of the deepest post-Permian structures within the Central European Basin system and is located right at its “heart” at the transition from the North Sea to the Baltic Sea and from the Lower Saxony Basin to the Rynkoebing–Fyn High. The Mesozoic to recent evolution is investigated by use of selected seismic lines, seismic flattening and a 3D structural model. A major tectonic event in the latest Middle–Late Triassic (Keuper) was accompanied by strong salt tectonics within the Glueckstadt Graben. At that time, a rapid subsidence took place within the central part, which provides the “core” of the Glueckstadt Graben. The post-Triassic tectonic evolution of the area does not follow the typical scheme of thermal subsidence. In contrast, it seems that there is a slow progressive activation of salt movements triggered by the initial Triassic event. Starting with the Jurassic, the subsidence centre partitioned into two parts located adjacent to the Triassic “core.” In comparison with other areas of the Central European Basin system, the Glueckstadt Graben was not strongly affected by additional Jurassic and Cretaceous events. During the late Jurassic to Early Cretaceous, the area around the Glueckstadt Graben was affected by relative uplift with regional erosion of the elevated relief. However, subsidence was reactivated and accelerated during the Cenozoic when a strong subsidence centre developed in the North Sea. During Paleogene and Quaternary–Neogene, the two centres of sedimentation moved gradually towards the flanks of the basin. The data indeed point toward a control of post-Permian evolution by gradual withdrawal of salt triggered by the initial exhaustion along the Triassic subsidence centre. In this sense, the Glueckstadt Graben was formed at least partially as “basin scale rim syncline” during post-Permian times. The present day Hamburger, East and Westholstein Troughs are the actual final state of this long-term process which still may continue and may play a role in terms of young processes and, e.g., for coastal protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.