Abstract
ObjectivesTo assess the protective effect of the glucagon-like peptide-1 receptor (GLP-1R) agonist morroniside against neuropathic pain and its downstream mechanisms of activating microglial GLP-1R/interleukin-10 (IL-10)/β-endorphin antinociceptive pathway. MethodsSpinal nerve ligation-induced neuropathic pain rats were intrathecally injected with morroniside, with mechanical paw withdrawal threshold being assessed. The expression of spinal and cultured microglia IL-10 and β-endorphin were detected with qRT-PCR. Key findingsMorroniside alleviated mechanical allodynia in neuropathic rats, which was blocked by inhibiting or depleting microglia. In addition, neutralizing spinal IL-10 or β-endorphin with specialized antibodies or blocking the μ-opioid receptor was able to fully reverse the morroniside-induced mechanical antiallodynia. Morroniside treatment stimulated the gene expression of IL-10 and β-endorphin in the spinal lumbar enlargements of neuropathic rats as well as in primary cultured microglia. Furthermore, pretreatment with the IL-10 antibody blocked morroniside-stimulated β-endorphin expression in the spinal cords of neuropathic rats and cultured primary microglia, whereas the β-endorphin antibody failed to affect morroniside-stimulated gene expression of IL-10. ConclusionsThese results reveal that morroniside produces therapeutic effects in neuropathy through spinal microglial expression of IL-10 and subsequent β-endorphin after activation of GLP-1R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.