Abstract

The Gittins scheduling policy minimizes the mean response in the single-server M/G/1 queue in a wide variety of settings. Most famously, Gittins is optimal when preemption is allowed and service requirements are unknown but drawn from a known distribution. Gittins is also optimal much more generally, adapting to any amount of available information and any preemption restrictions. However, scheduling to minimize mean response time in a multiserver setting, specifically the central-queue M/G/k, is a much more difficult problem. In this work we give the first general analysis of Gittins in the M/G/k. Specifically, we show that under extremely general conditions, Gittins's mean response time in the M/G/k is at most its mean response time in the M/G/1 plus an O(log(1/(1 - ρ))) additive term, where ρ is the system load. A consequence of this result is that Gittins is heavy-traffic optimal in the M/G/k if the service requirement distribution S satisfies E[S2(log S)+] < ∞. This is the most general result on minimizing mean response time in the M/G/k to date. To prove our results, we combine properties of the Gittins policy and Palm calculus in a novel way. Notably, our technique overcomes the limitations of tagged job methods that were used in prior scheduling analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.