Abstract

We show that time complexity analysis of higher-order functional programs can be effectively reduced to an arguably simpler (although computationally equivalent) verification problem, namely checking first-order inequalities for validity. This is done by giving an efficient inference algorithm for linear dependent types which, given a PCF term, produces in output both a linear dependent type and a cost expression for the term, together with a set of proof obligations. Actually, the output type judgement is derivable iff all proof obligations are valid. This, coupled with the already known relative completeness of linear dependent types, ensures that no information is lost, i.e., that there are no false positives or negatives. Moreover, the procedure reflects the difficulty of the original problem: simple PCF terms give rise to sets of proof obligations which are easy to solve. The latter can then be put in a format suitable for automatic or semi-automatic verification by external solvers. Ongoing experimental evaluation has produced encouraging results, which are briefly presented in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.