Abstract
We study the geodesic X-ray transform X on compact Riemannian surfaces with conjugate points. Regardless of the type of the conjugate points, we show that we cannot recover the singularities and, therefore, this transform is always unstable (ill-posed). We describe the microlocal kernel of X and relate it to the conjugate locus. We present numerical examples illustrating the cancellation of singularities. We also show that the attenuated X-ray transform is well posed if the attenuation is positive and there are no more than two conjugate points along each geodesic; but it is still ill-posed if there are three or more conjugate points. Those results follow from our analysis of the weighted X-ray transform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.