Abstract

BackgroundGlobodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. It is also an important model for the biology of cyst nematodes. Cyst nematodes and root-knot nematodes are the two most important plant parasitic nematode groups and together represent a global threat to food security.ResultsWe present the complete genome sequence of G. pallida, together with transcriptomic data from most of the nematode life cycle, particularly focusing on the life cycle stages involved in root invasion and establishment of the biotrophic feeding site. Despite the relatively close phylogenetic relationship with root-knot nematodes, we describe a very different gene family content between the two groups and in particular extensive differences in the repertoire of effectors, including an enormous expansion of the SPRY domain protein family in G. pallida, which includes the SPRYSEC family of effectors. This highlights the distinct biology of cyst nematodes compared to the root-knot nematodes that were, until now, the only sedentary plant parasitic nematodes for which genome information was available. We also present in-depth descriptions of the repertoires of other genes likely to be important in understanding the unique biology of cyst nematodes and of potential drug targets and other targets for their control.ConclusionsThe data and analyses we present will be central in exploiting post-genomic approaches in the development of much-needed novel strategies for the control of G. pallida and related pathogens.

Highlights

  • Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes

  • The recombination rate in M. hapla is more than 50-fold higher than the estimated rate for C. elegans [35]. These data suggest that there has been a high rate of large-scale genome rearrangement in the evolutionary history of the lineage leading to G. pallida and other Tylenchids and, in particular, present the possibility that inter-chromosomal rearrangements may be more common in clade IV than elsewhere in the phylum

  • The combined genome and transcriptome dataset represents a vital platform in understanding the biology of cyst nematodes, enabling generation of testable hypotheses about gene function and offering valuable insight into many key processes associated with the parasitic lifestyle

Read more

Summary

Introduction

Globodera pallida is a devastating pathogen of potato crops, making it one of the most economically important plant parasitic nematodes. The most widespread and damaging species of root-knot nematodes have a wide host range and are prevalent in Mediterranean, subtropical and tropical regions while cyst nematode species have more restricted host ranges and the most damaging species are found predominantly in more temperate agricultural regions. Both root-knot and cyst nematodes are obligate, sedentary endoparasites that have unique, biotrophic interactions with their host plants. Biotrophic parasitism of plants by root-knot nematodes and cyst nematodes has evolved independently [4] and this is reflected in the different feeding structures of these nematodes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.