Abstract

Using the entropy density near the event horizon of Kerr-Newman black hole, the instantaneous radiation energy flux and the instantaneous radiation power of the slowly changing Kerr-Newman black hole have been studied. It is found that the thermal radiation of the Kerr-Newman black hole always satisfies the generalized Stefan-Boltzmann law and is affected by the gravitational field, the electromagnetic field around the black hole and the change of black hole event horizon. But the rate of the change of the event horizon usually makes very little affect on the instantaneous radiation energy flux and radiation power. Only when the rate of the change of the event horizon approaches to the light speed, it can make obviously affect on them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.