Abstract
Simple SummaryResistance to standard therapies impose a huge challenge on the treatment for glioblastoma multiforme (GBM), which is often considered as a cell intrinsic property of either GBM or, more significantly, of GBM stem-like cells. Tumor-associated macrophages and microglia (TAMs) take up the majority of the immune population in the tumor microenvironment of GBM and potentially participating in modulating therapy responses. However, little is known about the mechanisms underlying the effect of TAMs on temozolomide (TMZ) induced chemoresistance. Members of the metzincin superfamily such as Matrix Metalloproteases (MMPs) and A Disintegrin and Metalloprotease (ADAM) proteases are important participants in the process of intercellular communications in the tumor microenvironment. Herein, we revealed a novel concept of an intra-tumoral ADAM8 mediated malignant positive feedback loop constituted by the intimate interaction of tumor associated macrophages (TAMs) and GBM cells under TMZ treatment. These findings provide a convincing example and further support the notion that the tumor microenvironment, in addition to GBM cells and GBM stem-like cells, should be considered as an essential modulator of therapy in GBM. In conclusion, our study provides a rational basis for TAM sparing ADAM8-targeting in GBM to optimize standard chemotherapy.Standard chemotherapy of Glioblastoma multiforme (GBM) using temozolomide (TMZ) frequently fails due to acquired chemoresistance. Tumor-associated macrophages and microglia (TAMs) as major immune cell population in the tumor microenvironment are potential modulators of TMZ response. However; little is known about how TAMs participate in TMZ induced chemoresistance. Members of the metzincin superfamily such as Matrix Metalloproteases (MMPs) and A Disintegrin and Metalloprotease (ADAM) proteases are important mediators of cellular communication in the tumor microenvironment. A qPCR screening was performed to identify potential targets within the ADAM and MMP family members in GBM cells. In co-culture with macrophages ADAM8 was the only signature gene up-regulated in GBM cells induced by macrophages under TMZ treatment. The relationship between ADAM8 expression and TAM infiltration in GBM was determined in a patient cohort by qPCR; IF; and IHC staining and TCGA data analysis. Moreover; RNA-seq was carried out to identify the potential targets regulated by ADAM8. CCL2 expression levels were determined by qPCR; Western blot; IF; and ELISA. Utilizing qPCR; IF; and IHC staining; we observed a positive relationship between ADAM8 expression and TAMs infiltration level in GBM patient tissues. Furthermore; ADAM8 induced TAMs recruitment in vitro and in vivo. Mechanistically; we revealed that ADAM8 activated HB-EGF/EGFR signaling and subsequently up-regulated production of CCL2 in GBM cells in the presence of TMZ treatment; promoting TAMs recruitment; which further induced ADAM8 expression in GBM cells to mediate TMZ chemoresistance. Thus; we revealed an ADAM8 dependent positive feedback loop between TAMs and GBM cells under TMZ treatment which involves CCL2 and EGFR signaling to cause TMZ resistance in GBM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.