Abstract
This paper belongs to a broad line of research leaded by Herrera, which encompasses a good number of numerical methods such as Localized Adjoint Method (LAM), Eulerian-Lagrangian LAM (ELAM) and Trefftz-Herrera Method. The results presented in this paper are required in order to incorporate Herrera's general theory in a Sobolev-space setting. In particular, this article introduces a class of partitions (or domain decompositions) whose internal boundaries belong to a category of manifolds with corners, here also presented. Then a version of Gauss (or divergence) theorem, in a wider sense, is established and an explicit integral formula is associated for any given linear partial differential operator L, its adjoint and concomitant. The structure of the bilinear concomitant induced by L is first determined. Then the required formula is given over that class of domain decompositions. Finally, an integral formula well on the way of the Green-Herrera formula is settled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.