Abstract

The equilibrium molecular structure of the decasilsesquioxane, Si(10)O(15)H(10), in the gas phase has been determined by gas electron diffraction. Molecular dynamics calculations were used to give amplitudes of vibration and differences between interatomic distances in the equilibrium structure and the vibrationally averaged distances that are given directly by the diffraction data. The molecules have D(5h) symmetry, and do not show the distortions that are apparent in the crystalline phase. The ten-membered silicon-oxygen rings are found to be particularly flexible in the gas phase, a phenomenon that was also seen in crystal structures. The Si-O bond lengths in the ten-membered rings are 161.6(2) pm long and in the eight-membered rings they are 162.2(3) pm, with Si-O-Si angles of 155.0(5) and 153.9(7) degrees , respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.