Abstract

Most population studies of pulsars have hitherto focused on the disc of the Galaxy, the Galactic centre, globular clusters, and nearby galaxies. It is expected that pulsars, by virtue of their natal kicks, are also to be found in the Galactic halo. We investigate the possible population of canonical (i.e. non-recycled) radio pulsars in the halo, estimating the number of such pulsars, and the fraction that is detectable via single pulse and periodicity searches. Additionally, we explore the distributions of flux densities and dispersion measures of this population. We also consider the effects of different velocity models and the evolution of inclination angle and magnetic field on our results. We show that $\sim$33 % of all pulsars beaming towards the Earth are in the halo but the fraction reduces to $\sim$1.5 % if we let the inclination angle and the magnetic field evolve as a falling exponential. Moreover, the fraction that is detectable is significantly limited by the sensitivity of surveys. This population would be most effectively probed by surveys using time-domain periodicity search algorithms. The current non-detections of pulsars in the halo can be explained if we assume that the inclination angle and magnetic field of pulsars evolve with time. We also highlight a possible confusion between bright pulses from halo pulsars and Fast Radio Bursts with low dispersion measures where further follow-up is warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.