Abstract

Herein, we designed several structures of GaAs/AlGaAs extended gate high electron mobility transistors (EG-HEMT) for cTnI detection, in order to explore the mechanism of bio-detection, the limit of detection (LOD) as well as the application in clinical detection. The experiment carried out that 50y structure of EG-HEMT biosensor, whose extended electrode is 50 times as large as the gate, has highest biological regulation ability ( δ). Meanwhile, the concentration range of cTnI detection using 50y EG-HEMT biosensor is about 100 fg ml <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> to 10 μg ml <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-1</sup> , which is much broader than that of Unicel Dxl800 (usually be used in clinical detection). Furthermore, due to the influence of parasitic resistance and other factors, δ increases with the increase of y, but the rising rate of δ decreases at the same time. By comparing the detecting results of clinical samples, 30y EG-HEMT is the best in the detection of cTnI concentration with a relative error of 6%. In a higher concentration range, it is more accurate than that of the Unicel Dxl800, breaking through its limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.