Abstract

Parasites are being increasingly recognized as important pathogens with significant global economic, environmental, and public health impacts (1). More than three billion people worldwide are infected with one or more parasites with varying morbidity and mortality. For example, it was estimated that 740–1300 million people are infected with hookworms (Ancylostoma duodenale, Necator americanus), 1221–1472 million with roundworm (Ascaris lumbricoides), and 795–1050 million with whipworm (Trichuris trichiura) (2). Climate-related changes, the associated threat of vectors and vector-borne diseases (3–6), the escalating number of emerging or reemerging parasitic infections (7, 8), the alarming speed at which anti-parasitic drug resistance develops and spreads (9), and the astronomical cost of developing new anti-parasitic drugs; are just some of the challenges that make the future for treatment and control of many parasitic diseases uncertain. In the meantime, parasitology teaching and research are in a state of flux (merging, retrenchment, re-direction). This is reflected in the continued downward trend in the number of parasitology graduates and in the changing focus of the research programs, driven by limited governmental and charity funds, in industry, academic, and federal labs that used to have strong interests in solving parasitological problems. These difficulties make the scientific challenges for those trained and qualified in this discipline enormous. Given these challenges, parasitic diseases are likely to continue to be difficult to control and, thus, new scientific knowledge will be needed to enhance control efforts. Unfortunately, knowledge gaps still exist and these need addressing in order to answer persistent questions in parasite pathobiology and control. In this article, I will discuss some of these eminent challenges and propose new concepts that could open new windows for exploration and discovery in this exciting field.

Highlights

  • Parasites are being increasingly recognized as important pathogens with significant global economic, environmental, and public health impacts [1]

  • NEW TECHNOLOGIES TO DECIPHER HOST–PARASITE INTERACTION A major goal for modern parasitology research is to determine signal transduction mechanisms controlling the behavior, survival, virulence, and gene expression of parasites, factors that have a crucial role in influencing the outcome of the interaction between host and parasite

  • Parasite zoonoses can cause a variety of symptoms in humans, from skin irritation caused by flea bites, to death from multi-organ failure as observed in advanced Lyme disease

Read more

Summary

Introduction

Parasites are being increasingly recognized as important pathogens with significant global economic, environmental, and public health impacts [1]. Parasitic diseases are likely to continue to be difficult to control and, new scientific knowledge will be needed to enhance control efforts. NEW TECHNOLOGIES TO DECIPHER HOST–PARASITE INTERACTION A major goal for modern parasitology research is to determine signal transduction mechanisms controlling the behavior, survival, virulence, and gene expression of parasites, factors that have a crucial role in influencing the outcome of the interaction between host and parasite.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.