Abstract

While trans-glyoxal may not be easily observable in astronomical sources through either IR or radioastronomy due to its C2h symmetry, its cis conformer along with the cyc-H2COCO epoxide isomer should be ready targets for astrochemical detection. The present quantum chemical study shows that not only are both molecular isomers strongly polar, they also have notable IR features and low isomerisation energies of 4.1 kcal mol-1 and 10.7 kcal mol-1, respectively. These three isomers along with two other C2O2H2 isomers have had their full set of fundamental vibrational frequencies and spectroscopic constants characterised herein. These isomers have previously been shown to occur in simulated astrophysical ices making them worthy targets of astronomical search. Furthermore, the hybrid quartic force field (QFF) approach utilized herein to produce the needed spectral data has a mean absolute percent error compared to the experimentally-available, gas phase fundamental vibrational frequencies of 0.6% and rotational constants to better than 0.1%. The hybrid QFF is defined from explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples level [CCSD(T)-F12b] including core electron correlation and a canonical CCSD(T) relativity correction for the harmonic (quadratic) terms in the QFF and simple CCSD(T)-F12b/cc-pVDZ energies for the cubic and quartic terms, the so-called "F12-TcCR+DZ QFF." This method is producing spectroscopically-accurate predictions for both fundamental vibrational frequencies and principal spectroscopic constants. Hence, the values computed in this work should be notably accurate and, hence, exceptionally useful to the spectroscopy and astrochemistry communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.