Abstract

A stationary Carnot-like power plant model, with three sources of irreversibilities (the finite rate of heat transfers, heat leak and internal dissipations of the working fluid), is analyzed by a criterion of partial optimization for five objective functions (power, efficiency, ecological function, efficient power and criterion). A remarkable result is that if two constraints (design rules) are applied alternatively: constrained internal thermal conductance or fixed total area of the heat exchangers from hot and cold sides; the optimal allocation, cost and effectiveness of the heat exchangers are the same for all these objective functions independently of the transfer heat law used. Thus, it is enough to find these optimal relations for only one, maximum power, when all heat transfers are linear. In particular, for the Curzon–Albhorn-like model (without heat leak), the criterion for the so-called ecological function, including other variables (the internal isentropic temperature ratio), becomes total.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.