Abstract

AbstractSlow vertical climbing and clinging are the dominant positional behaviors of the most convincing reconstruction of the primary spatial niche of Megaladapis, a giant extinct prosimian from Madagascar. The vertical support model of Cartmill ('74) predicts that clawless mammals should exhibit relatively elongated forelimbs in expanded size ranges. The allometric corollaries of this model are tested on closely related interspecific samples of Megaladapis and selected extant prosimians. Megaladapis and indriids (vertical leapers and clingers) conform to the structural predictions of the model, and are clearly distinguished from the more pronograde lemurids and cheirogaleids. Extreme hindlimb reduction (negative allometry) is coupled with moderate forelimb elongation (positive allometry) in Megaladapis. These body proportions effectively optimize pedal friction during vertical climbing and minimize the moment of body weight pulling the animal away from the trunk. Positive forelimb allometry occurs in the indriids, while isometry obtains for the hindlimb. The adaptive significance of these morphological strategies are discussed, as are possible selective mechanisms which effect the extreme hindlimb reduction in Megaladapis. Body weight estimates are also presented for Megaladapis edwardsi and Megaladapis grandidieri (50–100 kg and 40–75 kg, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.