Abstract

The functional significance of gap-junction (GJ) channels in seizure susceptibility and induction and maintenance of seizures in the developing rat brain was investigated on the 4-aminopyridine (4-AP) in vivo epilepsy model. In electrophysiological experiments, GJs were manipulated with a blocker or opener before induction or at the active epileptic foci between postnatal days 9 and 28 (P9-28). Semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) amplification was used to measure the levels of connexin (Cx) 26, 32, 36, and 43 mRNAs at the untreated cortex or epileptic foci. The basic electrocorticogram (ECoG) and Cx messenger RNA (mRNA) expression patterns exhibited characteristic maturation; the 4-AP-induced epileptiform activity correlated well with these changes. Cx mRNA expressions were significantly upregulated around P16 (except for Cx26). The Cx26, 36, and 43 gene inducibility was highest around P16 and then declined significantly. In the youngest animals, the GJ opener induced rhythmic synchronous cortical activity. On maturation, the seizures became focalized and periodic; the discharges accelerated their amplitude and frequency increase. A transient decrease (P13-14) and then increase (P15-16) in seizure susceptibility were followed by a tendency to periodicity and focalization. The study suggests that GJ communication is involved in rhythm genesis and synchronization of cortical activity and may enhance the epileptogenicity of the developing brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.