Abstract

ABSTRACTThe fracture and release mechanism of radioactive aerosols of HLW glass and HLW canisters are studied experimentally by laboratory scale and full scale drop tests. The experimental conditions model the conditions of accidental drops in a deep salt repository. The laboratory scale drop tests have a scaling factor of 1:10. Accelerated probes of simulated HLW glass impact on a ground plate and the size distributions of broken fines and released aerosols are measured by sieving and scanning electron microscopy (SEM) of aerosol samples.The impact velocity is determined as the dominating impact parameter. Further parameters tested, such as waste glass composition, cooling time (residual thermal stresses), probe temperature at impact, and ground characteristics, show no measurable influence. Source terms of released respirable aerosols are evaluated for two reference cases, borehole drop (impact velocity v = 80 m/s) and reloading hall drop (v = 14 m/s), the values being 0.1 % and to 2.10-4 % respectively of the glass probe mass. The full scale drop tests are performed with European Standard HLW canisters. The canisters keep their integrity in all tests up to drop heights of 14 m. On opening the canisters, the broken fines are analyzed by sieving. The results are in good agreement with the small scale tests and confirm their acceptability for use in a safety analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.