Abstract
The formation of disinfection by-products (DBPs) is a public health concern. An important way to evaluate the presence of DBPs is in terms of the total organic halogen (TOX), which can be further specified into total organic chlorine (TOCl), bromine (TOBr), and iodine (TOI). The formation and distribution of halogen-specific TOX during chlorination and chloramination of natural organic matter (NOM) isolates in the presence of bromide and iodide ions were studied. As expected, chloramination produced significantly less TOX than chlorination. TOCl was the dominant species formed in both chlorination and chloramination. TOI was always produced in chloramination, but not in chlorination when high chlorine dose was used, due to the limited presence of HOI in chlorination as a result of the oxidation of iodide to iodate in the presence of excess chlorine. The formation of TOI during chloramination increased as the initial iodide ion concentration increased, with a maximum of ∼60% of the initial iodide ion becoming incorporated into NOM. Iodine incorporation in NOM was consistently higher than bromine incorporation, demonstrating that the competitive reactions between bromine and iodine species in chloramination favoured the formation of HOI and thus TOI, rather than TOBr. Correlations between the aromatic character of the NOM isolates (SUVA 254 and % aromatic C) and the concentrations of overall TOX and halogen-specific TOX in chloramination were observed. This indicates that the aromatic moieties in NOM, as indicated by SUVA 254 and % aromatic C, play an important role in the formation of overall TOX and halogen-specific TOX in chloramination. THMs comprised only a fraction of TOX, up to 7% in chloramination and up to 47% in chlorination. Although chloramine produces less TOX than chlorine, it formed proportionally more non-THM DBPs than chlorine. These non-THM DBPs are mostly unknown, corresponding to unknown health risks. Considering the higher potential for formation of iodinated DBPs and unknown DBPs associated with the use of chloramine, water utilities need to carefully balance the risks and benefits of using chloramine as an alternative disinfectant to chlorine in order to satisfy guideline values for THMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.