Abstract

ABSTRACT The presented work investigates the possible formation of terrestrial planets in the habitable zone (HZ) of the exoplanetary system HD 141399. In this system, the HZ is located approximately between the planets c (a = 0.7 au) and d (a = 2.1 au). Extensive numerical integrations of the equations of motion in the pure Newtonian framework of small bodies with different initial conditions in the HZ are performed. Our investigations included several steps starting with 500 massless bodies distributed between planets c and d in order to model the development of the disc of small bodies. It turns out that after some 106 yr, a belt-like structure analogue to the main belt inside Jupiter in our Solar system appears. We then proceed with giving the small bodies masses (∼ Moon mass) and take into account the gravitational interaction between these planetesimal-like objects. The growing of the objects – with certain percentage of water – due to collisions is computed in order to look for the formation of terrestrial planets. We observe that planets form in regions connected to mean motion resonances (MMR). So far there is no observational evidence of terrestrial planets in the system of HD 141399 but from our results we can conclude that the formation of terrestrial planets – even with an appropriate amount of water necessary for being habitable – in the HZ would have been possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.