Abstract
New epidemics encourage the development of new mathematical models of the spread and forecasting of infectious diseases. Statistical epidemiology data are characterized by incomplete and inexact time series, which leads to an unstable and non-unique forecasting of infectious diseases. In this paper, a model of a conditional generative adversarial neural network (CGAN) for modeling and forecasting COVID-19 in St. Petersburg is constructed. It takes 20 processed historical statistics as a condition and is based on the solution of the minimax problem. The CGAN builds a short-term forecast of the number of newly diagnosed COVID-19 cases in the region for 5 days ahead. The CGAN approach allows modeling the distribution of statistical data, which allows obtaining the required amount of training data from the resulting distribution. When comparing the forecasting results with the classical differential SEIR-HCD model and a recurrent neural network with the same input parameters, it was shown that the forecast errors of all three models are in the same range. It is shown that the prediction error of the bagging model based on three models is lower than the results of each model separately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.