Abstract

The flow stress behavior and constitutive equation of the nanometric Al2O3particulate reinforced Al alloy matrix composites were investigated in the temperature range from 590k-710k, and at the strain rates range from 0.01s-1-1s-1. Hot compression tests were carried out with thermal simulation machine Gleeble-1500. The results showed that the values of the true stresses rose rapidly and then held constant to some extent after attaining the peak values with the increasing strains at different deformation condition. The flow stress for the composites increased with increasing strain rate, which means that the experimental material is a sensitive material of positive strain rate, and decreased with decreasing temperature. Dynamic recovery and dynamic recrystallization occurred during hot compression of the composites. The constitutive equation represented by a Zener-Hollomon parameter in an exponent-type and the deformation activation energy are as follows respectively: σ=71.43ln{(Z/4.37×1011)1/5.94+[(Z/4.37×1011)2/5.94+1]1/2}, Q=197KJ mol-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.