Abstract

Fe–43at%Al single crystals were deformed in compression between room temperature and 700 °C. The strain rate sensitivity of the flow stress was measured by stress relaxation tests. The dislocation structure of the deformed samples was studied in a high-voltage transmission electron microscope. In addition, micro-tensile specimens were deformed in situ in this microscope to directly observe the dynamic behaviour of the dislocations. The specimens show a flow stress anomaly accompanied with an ‘inverse’ dependence of the strain rate sensitivity on the strain rate. Both the in situ experiments and the transmission electron micrographs of macroscopically deformed samples indicate the occurrence of climb at temperatures in and above the anomaly range. In the in situ experiments, viscously moving dislocations are straight and crystallographically oriented. The phenomena related to the flow stress anomaly are interpreted by the decomposition of the cores of dislocations with 〈111〉 Burgers vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.