Abstract

PurposeExposure to the polyphenolic plant lignan secoisolariciresinol diglucoside (SDG) and its metabolite enterolactone (ENL) has been associated with reduced breast cancer progression, particularly for estrogen receptor alpha (ERα)-negative disease, and decreased preclinical mammary tumor growth. However, while preclinical studies have established that SDG and ENL affect measures of progression in models of triple-negative breast cancer (TNBC, a subset of ERα-negative disease), the molecular mechanisms underlying these effects remain unclear.MethodsC57BL/6 mice were fed a control diet (control, 10% kcal from fat) or control diet + SDG (SDG, 100 mg/kg diet) for 8 weeks, then orthotopically injected with syngeneic E0771 mammary tumor cells (a model of TNBC); tumor growth was monitored for 3 weeks. The role of reduced NF-κB signaling in SDG’s anti-tumor effects was explored in vitro via treatment with the bioactive SDG metabolite ENL. In addition to the murine E0771 cells, the in vitro studies utilized MDA-MB-231 and MCF-7 cells, two human cell lines which model the triple-negative and luminal A breast cancer subtypes, respectively.ResultsSDG supplementation in the mice significantly reduced tumor volume and expression of phospho-p65 and NF-κB target genes (P < 0.05). Markers of macrophage infiltration were decreased in the distal-to-tumor mammary fat pad of mice supplemented with SDG relative to control mice (P < 0.05). In vitro, ENL treatment inhibited viability, survival, and NF-κB activity and target gene expression in E0771, MDA-MB-231, and MCF-7 cells (P < 0.05). Overexpression of Rela attenuated ENL’s inhibition of E0771 cell viability and survival.ConclusionsSDG reduces tumor growth in the E0771 model of TNBC, likely via a mechanism involving inhibition of NF-κB activity. SDG could serve as a practical and effective adjuvant treatment to reduce recurrence, but greater understanding of its effects is needed to inform the development of more targeted recommendations for its use.

Highlights

  • MethodsSecoisolariciresinol diglucoside (SDG) is a polyphenolic plant lignan found in flaxseeds and other oil-rich seeds and nuts as well as legumes, whole grains, certain fruits and vegetables, coffee, tea, and wine [1, 2]

  • The goal of this study was to establish the concentration of SDG that would result in serum ENL and END levels comparable to those achieved in a 12-month pilot clinical trial of SDG supplementation in women [27]

  • While the anti-tumor effects of the flaxseed lignan SDG have been thoroughly established in several models of ERα-positive breast cancer [9,10,11,12, 14,15,16,17, 35], less attention has been given to its impact on ERα-negative models, including models of basal-like and other triple-negative breast cancer subtypes, and the precise mechanisms mediating their effects

Read more

Summary

Introduction

MethodsSecoisolariciresinol diglucoside (SDG) is a polyphenolic plant lignan found in flaxseeds and other oil-rich seeds and nuts as well as legumes, whole grains, certain fruits and vegetables, coffee, tea, and wine [1, 2]. To further explore SDG’s impact on breast cancer, several preclinical studies have examined the effects of lignan exposure on animal models of both pre- and postmenopausal ERα-positive breast cancer, with the vast majority demonstrating significant reductions in mammary tumor growth or preneoplastic changes [9,10,11,12,13,14,15,16,17,18]. These anti-tumor effects have been linked to decreased proliferation and angiogenesis as well as increased apoptosis [9,10,11, 13, 15,16,17]. There has been relatively little exploration of SDG’s effects on models of triple-negative breast cancer (TNBC), despite epidemiologic data suggesting enterolignans may have a stronger protective effect

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.