Abstract

The relationship between bacterial drug resistance and growth fitness is a contentious topic, but some antibiotic resistance mutations clearly have a fitness cost in the laboratory. Whether these costs translate into deleterious effects in natural habitats is less certain however. Previously, fitness effects of resistance mutations were mostly characterized in nutrient-rich, fast-growth conditions, which bacteria rarely encounter in natural habitats. Carbon, phosphate, iron or oxygen limitations are conditions met by bacterial pathogens in various compartments of the human body. Here, we measured the fitness of four different rpoB mutations commonly found in rifampicin-resistant bacterial isolates. The fitness properties and the emergence of these and other alleles were studied in Escherichia coli populations growing under nutrient excess and in four different nutrient-limited states. Consistent with previous findings, all four mutations exhibited deleterious fitness effects under nutrient-rich conditions. In stark contrast, wefound positive or neutral fitness effects under nutrient-limited conditions. Two particular rpoB alleles had a remarkable fitness increase under phosphate limitation and these alleles arose to high frequencies specifically under phosphate limitation. These findings suggest that it is not meaningful to draw general conclusions on fitness costs without considering bacterial microenvironments in humans and other animals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.