Abstract
tRNase Z is the endonuclease that is involved in tRNA 3'-end maturation by removal of the 3'-trailer sequences from tRNA precursors. Most eukaryotes examined to date, including the budding yeast Saccharomyces cerevisiae and humans, have a single long form of tRNase Z (tRNase ZL). In contrast, the fission yeast Schizosaccharomyces pombe contains two candidate tRNase ZLs encoded by the essential genes sptrz1+ and sptrz2+. In the present study, we have expressed recombinant SpTrz1p and SpTrz2p in S. pombe. Both recombinant proteins possess precursor tRNA 3'-endonucleolytic activity in vitro. SpTrz1p localizes to the nucleus and has a simian virus 40 NLS (nuclear localization signal)-like NLS at its N-terminus, which contains four consecutive arginine and lysine residues between residues 208 and 211 that are critical for the NLS function. In contrast, SpTrz2p is a mitochondrial protein with an N-terminal MTS (mitochondrial-targeting signal). High-level overexpression of sptrz1+ has no detectable phenotypes. In contrast, strong overexpression of sptrz2+ is lethal in wild-type cells and results in morphological abnormalities, including swollen and round cells, demonstrating that the correct expression level of sptrz2+ is critical. The present study provides evidence for partitioning of tRNase Z function between two different proteins in S. pombe, although we cannot rule out specialized functions for each protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.