Abstract

The Ratcliff diffusion model is now arguably the most widely applied model for response time data. Its major advantage is its description of both response times and the probabilities for correct as well as incorrect responses. The model assumes a Wiener process with drift between two constant absorbing barriers. The first-passage times at the upper and lower boundary describe the responses in simple two-choice decision tasks, for example, in experiments with perceptual discrimination or memory search. In applications of the model, a usual assumption is a varying drift of the Wiener process across trials. This extra flexibility allows accounting for slow errors that often occur in response time experiments. So far, the predicted response time distributions were obtained by numerical evaluation as analytical solutions were not available. Here, we present an analytical expression for the cumulative first-passage time distribution in the diffusion model with normally distributed trial-to-trial variability in the drift. The solution is obtained with predefined precision, and its evaluation turns out to be extremely fast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.