Abstract

It is a well-known result that almost all sample paths of a Brownian motion or Wiener process {W(t)} have infinitely many zero-crossings in the interval (0, δ) for δ > 0. Under the Kac condition, the telegraph process weakly converges to the Wiener process. We estimate the number of intersections of a level or the number of level-crossings for the telegraph process. Passing to the limit under the Kac condition, we also obtain an estimate of the level-crossings for the Wiener process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.