Abstract

We consider a stochastic model for the spread of an epidemic amongst a closed homogeneously mixing population, in which there are several different types of infective, each newly infected individual choosing its type at random from those available. The model is based on the carrier-borne model of Downton (1968), as extended by Picard and Lefèvre (1990). The asymptotic distributions of final size and area under the trajectory of infectives are derived as the initial population becomes large, using arguments based on those of Scalia-Tomba (1985), (1990). We then use our limiting results to compare the asymptotic final size distribution of our model with that of a related multi-group model, in which the type of each infective is assigned deterministically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.