Abstract

In mammalian cells, nonhomologous end-joining is the predominant mechanism to eliminate DNA double strand breaks. Such events are at the origin of deletion mutagenesis and chromosomal rearrangements. The hallmark of Fanconi anemia, an inherited cancer prone disorder, is increased chromosomal breakage associated to over-production of deletions. Knowing that double strand breaks are at the origin of deletion mutagenesis, the question arises whether their processing is affected in FA. We set up a "host cell end-joining assay" to analyze the fate of double strand breaks into extrachromosomal substrates transiently replicated in normal and FA-D lymphoblasts. Although no difference in plasmid survival was found, blunt-ended breaks were sealed with significantly lower fidelity in FA cells, resulting in a higher deletion frequency and a larger deletion size. The results suggest that FA-D and FA-B gene products are likely to play a role in end-joining fidelity of specific DNA double strand breaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.