Abstract

Abstract Tight gas reservoirs are widely distributed in China, which occupies one-third of the total resources of natural gas. The typical development method is under primary depletion. However, the recovery of tight gas is only around 20%. It is necessary to explore a new technique to improve tight gas recovery. Injecting CO2 into tight gas reservoirs is a novel trial to enhance gas recovery. The objective of this work is to verify and evaluate the effect supercritical CO2 on enhancing gas recovery and analyze the feasibility of CO2 enhance gas recovery of tight gas reservoir. Taken DND tight sandstone gas reservoir in North China as an example, 34 wells of DK13 wellblock were chosen as CO2 Enhanced gas recovery pilot area with 10-year production history. Six injection scenarios were studied. Numerical simulation indicated that the recovery of the gas reservoir of DK13 well area was improved by 8-9.5 percent when CO2 content of producers reaches 10 percent. The annual CO2 Storage would be 62 million cubic meters (110 thousand tons) and the total CO2 storage would be around 800million cubic meters (1.5 million tons). After the environmental parameter evaluation of injectors and producers, the anticorrosion schemes were put forward and the feasibility evaluation and schemes of facilities were presented. The analysis results indicated that DK13 wellblock was suitable for CO2 enhanced gas recovery no matter geologic condition, injection & production technology and facilities. However, under the current economic conditions, DK13 wellblock was not suitable for CO2to enhance gas recovery. However, if gas price rise or low carbon strategy implement, the pilot test could be carried out. In brief, CO2 could be an attractive option to successfully displace natural gas and decrease CO2 emissions, which is a promising technology for reducing greenhouse gas emission and increasing the ultimate gas recovery of tight gas reservoirs. This economic analysis, along with reservoir simulation and laboratory studies that suggest the technical feasibility of CSEGR, demonstrates that CSEGR can be feasible and that a field pilot study of the process should be undertaken to test the concept further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.