Abstract

In this article the results of a recent study designed to improve our understanding of the cyclic fatigue and fracture characteristics of a spray atomized and deposited hypereutectic aluminum-silicon alloy are presented. Specimens of the alloy were cyclically deformed to failure at ambient temperature under fully reversed total strain amplitude controlled tension-compression loading. The alloy exhibited low cyclic plasticity and fatigue life under total strain amplitude controlled deformation. Cyclic stress amplitude controlled high-cycle fatigue characteristics were established at an elevated temperature (150 °C). The cyclic stress response, high-cycle fatigue life and fracture characteristics of the alloy are compared with a conventional ingot metallurgy processed counterpart and discussed in light of intrinsic microstructural features, nature and magnitude of stress, and ductility of the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.