Abstract
Material fatigue is the basic factor limiting aircraft’s durability. It comes from the fact that changing loads affect aircraft structure as well as from the fact that aircraft’s mass restrictions do not allow for diminishing stress to the level when material fatigue does not occur. Estimating fatigue durability of a particular structure as well as its actual fatigue damage degree is possible when the history of loads affecting the structure is known. Accuracy of loads monitoring influences the accuracy of indicated fatigue wear. In case of older structures, which have been maintained according to safe life principle, the number of hours have been commonly used as a fatigue wear indicator. After aircraft structure reaches flying time estimated by the produces, it is considered as fatigue wear and it is no longer in service. In case of a lack of results of loads spectrum measurements, results of tests conducted for other aircraft (of similar structure and assignment) can be used. For this purpose, average loads spectrum has been elaborated for particular aircraft groups, for example, HELIX, FELIX, FALSTAFF, ENSTAFF, TWIST(10). In the case of small aircraft, the data from FAA (2) report have been often used. This article describes the way of fatigue wear estimation for PZL-130 Orlik aircraft on the basis of historical data from flight recorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.